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Mechanisms of CO2 laser mitigation of laser damage growth 
 in fused silica 

 
M.D. Feit* and A.M. Rubenchik 

Lawrence Livermore National Laboratory, P.O. Box 808- L-491, Livermore, CA 94550 
 

ABSTRACT 
 
Theoretical models for heating, evaporation, material flow, and stress and strain generation accompanying 
CO2 laser damage mitigation and surface treatment of fused silica are developed to aid understanding of 
scaling with process parameters. We find that lateral nonlinear heat transport is an important cooling 
mechanism, more significant than evaporative cooling. Scaling laws relating experiments with different set 
of parameters are presented. Transverse conduction, together with the increased thermal conductivity at 
high temperatures, allows a gentle evaporation regime at low laser intensity in which the rate can be 
controlled via laser fluence. For higher laser intensity, recoil momentum imparted by rapid evaporation 
generates pressure, which can lead to transverse flow of the melted material. Only a very thin layer can 
flow because viscosity increases rapidly with depth. Evaporation and flow are subject to instabilities that 
can impact surface quality, especially surface flatness, if large areas are processed. Also material flow can 
heal cracks and improve material quality. Analysis of stress indicates that maximal tensile stresses of order 
0.1 GPa, comparable to the tensile strength, can be generated.    
 
Keywords: laser damage growth, fused silica, laser mitigation 
 

1.  INTRODUCTION 
 

Since the discovery1 that the transverse size of laser-induced damage in fused silica grows exponentially 
with repeated laser exposures, it has been evident that damage growth is the key factor in determining beam 
obscuration and scattering losses resulting from laser-induced damage. Growth mitigation is needed to limit 
these losses for the large optics used in high-power lasers. Various approaches have been investigated2 
including chemical etch, plasma etch, and CO2 laser treatment. The CO2 treatment of individual damage 
sites has proven the most effective. It was noted3 by the end of the 1970’s that exposure of fused silica to 
CO2 laser radiation could lead to increased damage resistance. It was concluded this effect probably 
implied healing of sub-surface fracture. This conclusion was strengthened by the observation4 that 
increased damage resistance occurred at a fairly sharp laser power transition and probably corresponded to 
temperatures at which flow begins as evidenced by residual strains left in the material. This early work 
dealt with small beam damage. It is interesting to note that both the above5 -6and other7 early workers in 
laser cleaning noted that CO2 laser processed silica surfaces had reduced water and hydrocarbon content 
compared with mechanically polished surfaces. 
 
More recent experiments2 have demonstrated successful mitigation of growth of laser-initiated damage 
spots on large silica optics using CO2 laser irradiation. Indeed, the optical strength of material around the 
mitigated spot can be even higher than in the pristine material. These results make this mitigation method 
attractive for large-scale mitigation of NIF optics and motivate theoretical studies of the mitigation process 
to determine process scaling and optimization. We find that the laser radiation not only evaporates the 
damaged material, but also heals microcracks. The present paper summarizes our theoretical understanding 
of CO2 laser-damage mitigation.  
 
Growth of the damage spot is associated with enhanced absorption in material modified after previous laser 
shots. The ideal mitigation scheme must include local heating of the damage spot, melting and evaporation 
or revitrification of the modified material. Even if the transformation of heated modified material back to  
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fused silica is quick, some time is required for closure of voids and microcracks. Due to the large viscosity 
of fused silica, such closure is made possible only by heating the material up to high temperature: 
temperature high enough that significant evaporation of material is inevitable. Both evaporation and 
material healing are very sensitive to temperature, so temperature modeling is essential for an evaluation of 
the mitigation process. 
 
In most of the experiments done to date, the laser pulse is too short for the steady state to be reached so the 
nonstationarity of the temperature distribution is important. The effects of nonstationarity will be discussed 
in the next section of the paper. 
 
The evaporation rate is very sensitive to the surface temperature, which therefore must be evaluated as 
accurately as possible. As a result, the nonlinearity (temperature dependent conductivity) of thermal 
conduction must be taken into account8. We will discuss a convenient scaling law to relate experiments 
with different parameters.  
 
The enhanced optical strength of mitigated spots can be attributed to the healing of microcracks in the 
surrounding material. We will estimate the extent of the zone where material improvement takes place. We 
discuss thermal stresses induced by laser heating and the way to minimize their detrimental effects. 
 
Finally, implications of these results for optimal mitigation strategy will be discussed. 
 

2.  NONSTATIONARY TEMPERATURE EFFECTS 
 

We discuss here the role of temperature nonstationarity disregarding the temperature dependence of the 
thermal conductivity. The role of such nonlinearity will be discussed semi-quantitatively later. 
 
The temperature distribution on the surface of an optic induced by a Gaussian laser beam is given by the 
expression9 
 

 T r,t( )=
Aa2

D
κ
π

I(t − τ )

τ a2 + 4Dτ( )0

    t

∫ e
−  

r 2

a2 +4Dτ dτ      (1) 

 
where A is the absorbed fraction, A=0.85 for fused silica irradiated by a CO2 laser, D is the thermal 
diffusivity and κ is the thermal conduction coefficient. The intensity of the laser beam is I(r,t)=I(t) exp[-
r2/a2]. For a flat-top temporal pulse with duration τ and constant intensity I, the temperature at the center of 
the laser spot is 
 

  T =
0.85P

π( )3 / 2 aκ
Arc tan(

t

τ
)     with   τ =

a2

4D
     (2) 

 
Here P = Iπa2 is the beam power. Asymptotically, the temperature in the center of the laser spot approaches 
the stationary value Ts. 
   

 Ts =
0.85P

2aκ π
= 0.24

P
aκ

       (3) 

 
 
 
 



 

The surface temperature determines the ablation rate10. The velocity of the evaporation front is given by the 
expression10 
  
 V=V0e-U/kT         (4) 
  
where U is the latent heat of evaporation per atom, U=3.6 eV for fused silica and V0=3.8 x 105 cm/s.  
 
Temporal evolution of temperature and ablation rates are shown in Fig.(1) for the case where the steady-
state temperature is 2245°K and the steady state ablation rate is 50µ/s. One can see that the onset of the 
steady state regime for temperature is fast, about 10 a2/4D. Of course, the temperature is slightly different 
from the asymptotic value for a long time. Even at t=100 a2/4D, the temperature reaches only 0.94 of the 
steady state value. The ablation rate, however, is very sensitive to temperature, and, at the temperature at 
t=100 a2/4D, is only 14.4 µm/s compared to 50 µm/s at steady state. Thus, the ablation steady state is much 
harder to reach than the temperature steady state. 
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Fig.1: Temporal evolution of the temperature and 
ablation rate at the center of the laser spot. Time is 
measured in units of the thermal time a2/4D. 

Fig.2: Ablation rate evolution for beam radii a0 and 
0.9a0 for same conditions as above. 

 
As a result, the ablation rate is very sensitive to small variations of beam parameters, i.e. spot size and 
power. The temperature is dependent on beam size of course. The larger sensitivity of the ablation rate to 
small variations in beam size is shown in Fig(2). 
 
An important effect not taken into account thus far is the nonlinearity of thermal conduction, which reduces 
the sensitivity of the ablation rate to variation in the processing parameters8. Increase of thermal 
conductivity at high temperatures shortens the onset of the steady state; nevertheless, one can expect that 
the mitigation process typically will take place in the nonstationary ablation regime. 
 

3. NONLINEARITY OF THERMAL CONDUCTION AND SCALING LAW 
 
The thermal conductivity of silica increases with temperature. Above about 800K, the effective 
conductivity (rate at which thermal energy is lost) is determined mostly by radiation transport11. We will 
use the following empirical interpolation formula for the thermal conductivity of fused silica:  

      κ (T ) = κ 0 + βT 3 = 0.01(1 +1.7 ⋅10−9 T 3 )(W / cmK) = κ 0 f (
T

T0

)   (5) 

 
The coefficient β is determined from experimental data, κ0=0.01 W/cm°K at room temperature, κ~0.04 
W/cm°K at T0=1200°K. It must be mentioned that the experimental data is not very detailed. As far as the 



 

contribution of radiation transport is concerned, some photons traverse the sample without absorption and 
the effective thermal conduction can then depend on sample shape. As a result, experimental information 
on effective thermal conduction is not very reliable and should be used for qualitative estimates only. For 
simplicity below, we disregard the temperature dependence of density and specific heat, which is not 
essential. 
 
 For T<<T0 thermal transport can be treated as linear, i.e. κ(T)= κ0. In the opposite case one can put 
 

 κ (T ) = βT 3 = 0.01(1.7x10−9 T 3)(W / cmK) =κ 0 (
T

T0

)3     (6) 

The simple power law dependence of Eq.(6) affords a chance to find a scaling relation even in the highly 
nonlinear regime. 
 
We must solve the thermal diffusion equation 
 

 ρc
∂T
∂t

= ∇ • κ (T )∇T( )       (7) 

 
with the boundary condition 
 

 −κ (T )
∂T

∂z
= AIe

−
r2

a
2

         at z = 0       (8) 

 
If we normalize spatial scales by the beam radius a, and introduce the dimensionless diffusion time Dt/a2, 
where D=κ0/ρc, one sees that the problem will be characterized by one dimensionless parameter s= 
AIa/κ0Τ0.  Here Τ0 is a specific temperature scale introduced in Eq.(5).     This implies that the surface 
temperature and the ablation rate are functions of P/a and dimensionless time only. That is, surface 
temperature can be written in the form 
 

 T = T0 f (
AP

aκ 0T0

,
r

a
,

Dt

a2 )        (9) 

 
where the structure of the function f is determined by the nonlinearity of thermal conduction. Let parameter 
s be the ratio of the surface temperature to T0 for the case of linear thermal conduction. In the regime with 
nonlinear thermal conduction, s>>1, the relation Eq.(9) then offers the possibility to rescale experiments 
with different parameters. For example, to have the same processed crater for a beam spot two times larger, 
one must not only increase the power two times, but also increase pulse duration four times. 
 
For s>>1, when thermal conduction can be adequately described by Eq.(6) instead of Eq.(9) one can derive 
a simpler scaling 
 

 T = T0s1/4 f
r
a

,
Dts3/ 4

a2

 

 
 

 

 
  ; s =

AP
aT0κ0

     (10) 

One can think of this as an increase of the effective thermal diffusivity at high power. 
For thermal conduction of a more general type, κ=κ0(T/T0)n the scaling takes the form 
 

 T = T0s1/n+1 f
r
a

,
Dts n/n+1

a2

 

 
 

 

 
  ; s =

AP
aT0κ0

 

 
From Eq.(10), one sees that as power increases, surface temperature increases as P1/4 and time for the 
temperature onset decreases as P-3/4. 



 

 
 We introduce the new variable u,  

 κ 0u = κ (T )dT
0

T

∫         (11) 

Equation (11), with boundary condition Eq.(8), can be rewritten as 
 

 

∂T
∂t

= D∆u;

−κ 0

∂u

∂z
= AI(r) z= 0

        (12) 

 
One can see that in the steady-state situation the equations for u and for the temperature with temperature 
independent thermal conduction are identical, and for u in the center of the laser spot we have the analog of  
Eq.(3) 
 

 us =
0.85P

2ak0 π
= 0.24

P
ak0

       (13) 

 
For the thermal conduction law (2.2) we find for the temperature in the center of the laser spot 
 

 T = 0.75T0

P
aκ

0
T

0
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In Fig.(3) we compare the calculated evaporation rates vs. beam power both for linear thermal conduction, 
and for thermal transport described by Eq.(5) with experiment. The beam size was used as a fit parameter at 
a power of 50 W. The steepness of the curves is at issue here. One sees that Eq.(5) gives a better fit to 
experiment.  
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Fig.3:  Ablation rate calculated with linear and 
nonlinear thermal is transport. Dots are 
experimental values. Solid line is calculated with 
linear thermal conduction, dotted line is calculated 
with thermal conductivity given by Eq.(5) 

Fig.4:  Temperature distribution vs. distance from 
the surface. Dashed line corresponds to temperature 
dependent thermal conductivity, solid line 
corresponds to constant thermal conductivity. 
Surface temperature of  2245 °K corresponds to the 
experimentally observed ablation rate of 50 µm/sec.  



 

 
 
 

4. TEMPERATURE DISTRIBUTION 
 

One must know the temperature distribution in the material to estimate the extent of the microcrack healing 
process. For the case of linear conduction and temporally flat top laser pulse, the temperature distribution is 
given by the expression 
 

 T r, t( )=
Aa2I

D
κ
π

e
− z2

4 Dt

τ a2 + 4Dτ( )0

t

∫ e
−

r2

a
2 +4 Dτ dτ     (14) 

 
At the center of the laser spot at r=0, the steady state temperature is given by the expression 
 

 T =
AP

π( )3/2 ak

e
−

z 2ς 2

a
2

1+ ς2
0

∞

∫ dς =
AP

2aκ0 π
[1− erf[z /a ]]e

z 2

a2     (15) 

 
When thermal conduction is nonlinear, however, according to the general result of  the previous section we 
have 
 

 
2

2

]]/[1[
2

)(
0

a
z

eazerf
a

APTu −=
πκ

     (16) 

 
for the quantity u defined in Eq.(11). 
 
Temperature distributions for linear and nonlinear thermal conduction are shown in Fig.(4).  One can see 
that the nonlinearity flattens the temperature distribution. 
 
Typically, we are interested in cracks healing in a thin subsurface layer. For small z/a, by expanding  
Eq.(16) we obtain 
 

 T (z) = Ts −
AP

πaκ 0

(1 + 3
Ts

T0

 
 
  

 
 

3

)−1 z
a

      (17) 

 
As already discussed, the steady state temperature onset takes a long time and in many situations the 
temperature evolution is nonstationary. In the linear regime the temperature evolution can be found from  
Eq.(14). To evaluate temperature in the nonlinear regime, we mention that we are mainly interested in 
rectification of a thin layer near the surface. On a short time scale, the temperature evolution can be treated 
by a 1D model and the expression Eq.(6) can be used for thermal conduction. The specific result for heat 
propagation in a medium with nonlinear heat conduction of form κ=βTn is the existence of a sharp 
temperature front with coordinate zf(t). Near the front the temperature variation behaves as 
 

 T =
nv
β

z − z f
 
 
 

 
 
 

 1/ n

 

 
where v is the velocity of the thermal wave. The evolution of the temperature for the problem with fixed 
thermal flux q=AI on the boundary can be found from the following estimates8. 



 

 
 For thermal conduction given by Eq.(6) the flux can be estimated as 
 

 q ~
βT n+1

z f

=
3κ 0T0

z f

T
T0

 
 
  

 
 

4

           (18)  

 
From the thermal conduction equation we have 
 

 fzqtT // =          (19) 

 
From these relations we can find the temperature and thermal front coordinates 
 

 T =
q

1
n+2 t

1
n+2

β
1

n +2

= q2 / 5t1/ 5 T0
3

3κ 0

 
 
  

 
 

1 / 5

  

 

 zf = β 1/ n+2q
n

n+2 t
n+1
n+2 =

3κ 0

T0
3

 
 
  

 
 

1/ 5

q3/ 5t 4 / 5    

 
Temperature increases relatively slowly. With propagation of the thermal front, the gradient drop and the 
temperature increase must satisfy conservation of the thermal flux. 
 

5.  MATERIAL REMOVAL 
 

Heating of the surface induces material evaporation at a rate described by expression Eq.(4). The 
experimentally observed value is the crater depth 
 
 d = Vdt∫          (20) 
 
If the pulse duration is much longer than the thermal diffusion time, then the surface temperature is 
approximately equal to the steady state value Ts well before pulse termination and the crater depth is 
 

 d =V0e

−
U
kT

s τ  

 
where τ is the pulse duration. For short pulses, when the temperature increases until the end of the pulse, 
the crater depth is determined mainly by the temperature at the end of the pulse T(τ). We can expand the 
temperature around t=τ  to first order 
 
 T(t) = T τ( ) + T' τ( ) t − τ( )       (21) 
 
Calculating the integral in Eq.(20) we find 
 

 d = V0

T τ( )2

UT ' (τ)
e

− U

kT τ( )         (22) 

 



 

In both cases the depth is determined by the temperature at the end of the pulse and the dependence is 
exponential. A small change in temperature results in a large variation of depth. To increase the depth by a 
factor of e,  one needs to vary the temperature by 
 

 
δT
T

=  
kT
U

≈ 0.05  

 
Thus, for linear thermal conduction, when temperature is proportional to laser power, a  5% variation of 
power will  nearly triple the crater depth. For nonlinear thermal conduction, variations of power cause less 
extreme depth changes. For the thermal conductivity of Eq.(6 ), the variation of laser power must be four 
times larger to cause the same depth variation. 
 
Since the evaporation rate is very temperature dependent, the steady state crater size can be estimated by 
expanding the surface temperature distribution of Eq.1) around r=0 and integrating over time. This yields a 
quadratic temperature distribution 
 
  T( r)= Ts (1 – r2 /2 a2) 
 
Substituting this temperature distribution into the expression for the evaporation rate, Eq.(4), leads to an 
evaporation rate with Gaussian spatial shape. The 1/e radius of this evaporation rate is found to be 
 

 R =
2kTs

U
a  

 
Thus, for the parameters given above, the crater radius is predicted to be 3 times smaller than the laser 
beam radius. This prediction is consistent with experimental observations. 
 
In all our calculations, we disregarded cooling by evaporation. This is justified for the steady state regime8. 
For non-stationary processing, evaporative cooling can be important and would again make the processing 
less sensitive to power variations. 
 

6.  CRACK HEALING 
 

The high-temperature induced by absorption of infrared radiation not only evaporates material, but also 
reduces the viscosity of fused silica so that surface tension is able to close cracks, thereby annealing the 
material and increasing its optical strength. As pointed out above, the increase of optical damage resistance 
after CO2 laser processing has been known for several decades. What is new here is local application to 
heal specific defects.  
 
The typical time τ for relaxation of a surface disturbance with scale l can be estimated from the 
hydrodynamics of an extremely viscous liquid12 and is given by   
 

 τ ~
ηl
σ

          (23) 

 
The surface tension σ for glass is about 300 dyne/cm13 and not very sensitive to temperature. In the range 
of 1600-2000°C, the viscosity η is given by the expression14 
 

 η =1.05*10−9e

E
kT   poise        (24) 

 



 

where E is an activation energy, E~6.44 eV. For a deep crack, we must use the crack depth for l. If we 
know the crack depth and the acceptable annealing time, we can determine from Eqs.(23) and (24) the 
annealing temperature T. 
 
We consider crack mitigation by local heating. The time for crack healing is given by Eq.(23). During this 
time d= Vτ of material will be ablated. The total amount of ablated material is given by the expression 
 

 d =
η0lV0

σ
e

E−U

kT =1.75 *10−6 e
32944

T  

 
Here d and l are in microns, T in degrees Kelvin. The numerical value is for a one-micron scale crack. The 
amount of material ablated during the crack healing process as a function of surface temperature is shown 
in Fig.(5). One can see that for the temperature 2245K used above, ablation of more than 4 µm guarantees 
that cracks in the subsurface layer will be annealed. 
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Fig.6: The thickness of the annealed layer as a 
function of the surface temperature. 

 
Hence, in experiments2 the laser-induced temperature must be high enough to heal the subsurface layer 
around the damage spot. Due to the nonlinearity of thermal conduction, the temperature distribution around 
the heated spot is reasonably flat and a wide zone of microcracks can be annealed. 
 
We next estimate the extent of the annealed zone assuming the stationary temperature distribution. The 
temperature decrease inward into the heated material is given by Eq.(17), which can be rewritten as 

 T (z) = Ts −δT = Ts −
2u' (Ts )

u(Ts ) π
z
a

 

 
where u(T) is given by expression Eq.(11). The crack healing time is 
 
 

 τ (z) = τ (0)e
EδT

kTs
2

= τ (0)e
2EU(Ts )

√ π ′ U (Ts )kTs
2

z
a

 
 
and the thickness of the zone d in which cracks are healed is given by 
 

 d =
π  kTs

2u'(Ts )

2Eu(Ts )
a  

 
 
 



 

The temperature dependence of  d(T) is shown graphically in Fig.(6). For high temperatures 
 

 d ≈
2 π  kTs

E
a  

 
For Ts =2245 K d~0.1a. One can see that the healing time is a strong function of the temperature while the 
thickness of the annealed layer is not very sensitive to surface temperature. If the crack is annealed near the 
surface, the thickness of the annealed layer will be thick enough to guarantee effective damage mitigation.  
 
 
 

7.  LASER INDUCED STRESSES 
 

The laser-heated glass generates stress and strain due to thermal expansion. These strains can distort the 
initial flat glass surface, thus degrading the optical surface quality.  Stresses can cause the glass to fail, 
producing cracks which act as centers for subsequent damage growth. The heated fused silica is soft and 
thermally-induced stresses are released by small material displacements. When the material cools, viscosity 
rapidly increases and material is then unable to move to further release stresses. The transition from “soft” 
to solid material is determined by many factors including the cooling rate. But due to the very strong 
viscosity temperature dependence, it is convenient to introduce the softening temperature Tsoft. For 
temperatures below Tsoft the stresses will be treated as imprinted into the material. For fused silica Tsoft is 
1585C. 
 
One sees that if the heating of the glass is stationary, i.e. v<D/a where v is the scan velocity and D the 
thermal diffusivity, the time for buildup of stresses is τσ~a/s (s is the sound speed). This time is much 
smaller than the time to scan over the spot a/v~a2/D.  In this regime, stresses and strains can be treated as 
stationary. 
 
To make an estimate, consider a model spherically symmetrical temperature distribution T(r). At large r, 
for steady state temperature distribution, the heat equation gives T ~T0a/r. The temperature gradually drops 
from T~T0 at the spot center with spatial scale ~a. The material displacement u in this case has only a radial 
component ur(r) =u(r) given by 

 u = α 1+ ν
1− ν( )

1

r2 T r( )r2dr
0

r
∫  

 
Here α=7*10-7 °K-1 is the linear thermal expansion coefficient; υ=0.17 is the Poisson ratio. The maximum 
displacement occurs at r~a where u∼αTa. That is, the displacement is proportional to the spot size. For 
T~2000 °K and a=1mm, this displacement is about 1 µm.  The residual deformation remaining after the 
glass freezes can be expected to be of the same order because of the high viscosity. It is clear that 
deformations of this scale can seriously affect the part’s optical quality. The danger to surface quality for 
large-area scanning is apparent. 
 
The resulting strains and stresses can be calculated from the above displacement u 
Strains: 

 

uθθ = uϕϕ =
u

r

urr =
∂u

∂r
= −2

u

r
+

α 1 +ν( )
1 −ν( ) T (r )

   (25) 

 
 
 
 



 

Stresses 
 

 σ ik = E
1 + ν

uik + ν
1 − 2ν

ullδ ik
 
 
  

 
  

 
Here E is Young’s modulus, E=74 GPa for fused silica 
Hoop tensile stresses are the most dangerous: 
 

 

σθθ =
αE

1−ν( ) 1− 2ν( )
1− 2ν( )T

~
(r )+νT (r)

 

 

 
 
 
  

 

 

 
 
 
  

where   T
~

=
T (r)r2dr

0

r
∫

r3

     (26) 

 
Maximal hoop stress occurs at r~a and is given by 
 
 σ ~ αET          (27) 
 
Hoop stress is independent of beam size and for T~2000 °C, σ~0.1GPa which is comparable with the silica  
tensile strength~0.05 GPa.  Of course, we cannot conclude that the silica will inevitably crack as a result of 
processing. These estimates are uncertain by a factor of a few. Also, the maximum stress occurs where the 
glass is hot and ductile, cracking takes place during the cooling stage when thermal gradients are somewhat 
smoothed so stresses at that point will be smaller. But the above estimate does point out the possibility of 
cracking during the mitigation process. 
 
To open a crack of length l, one must apply the stress σ=K/√l , where K is the toughness of the material. 
K=0.75 MPa m1/2 for fused silica. The stress amplitude is determined by the maximum temperature only, 
but the extent of the zone of the maximal stress is about  equal to the spot size. Hence,  mitigation with a 
bigger spot size and the same peak temperature is more dangerous in terms of cracking. 
 
The previous discussion deals with the steady state temperature distribution. As discussed above, the 
stresses are relaxed in hot material, and imprinted only when the temperature drops to T=Tsoft. At this 
moment, the temperature distribution extends a large distance and the initial temperature distribution can be 
treated as a point source 
 
 T=Bδ(r)           (28) 
 
The constant A can be found from the energy balance 
 

 ρc T (r)dV = APτ∫ ;       B = 2
APτ
ρc

 

 
The initial distribution in Eq.(28) evolves in time as 
 

 T(r,t) = B
8 πDt( )3 / 2 e

− r2

4 Dt  

 



 

When the temperature in the center is equal to Tsoft the typical size of the distribution is  
 

 4Dt( )1 / 2 = B
T

soft

 

 
 

 

 
 

1/ 3

= APτ
ρcT

soft

 

 
 

 

 
 

1/ 3

     (29) 

 
For stress calculations, one can use Eqs.(25)-(28). The value of the imprinted hoop stress is 
  
 σ ~ αETsoft  
 
and the size of the stressed zone is given by Eq.(29) 
 

 
8.  SUMMARY 

 
We have presented above an analysis of thermal processes associated with laser mitigation of damaged 
spots. The results are a semi-quantitative description of the mitigation process, including some possible 
pitfalls.  
 
•We obtained scalings which can, in principle, relate experiments with operational parameters. The main 
conclusions of the analysis are in good correlation with recent experiments15. 
•The observed pit depth is predicted to be very sensitive to process parameters due to the strong 
dependence of evaporation rate on temperature. 
•Best results were predicted for processing with short pulses. Surface temperature will be higher for short 
pulse mitigation, and this also aids crack healing. 
 
There are some effects left out of our description. We disregarded the melt motion under the effect of 
reciprocal momentum produced by evaporation. Also we didn’t take into account the cooling due to 
evaporation. For typical mitigation parameters, these effects are not expected to be important8, but may 
play a role for short, intense pulses when the surface temperature is high. 
 
Finally, we note that the experiments6,15 reveals noticeable debris deposition around the processed spot. The 
nature and the effect of this debris on damage need additional study. 
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